搜索

基于卷烟机组的CAN总线实时设计浅析

gecimao 发表于 2019-04-30 18:14 | 查看: | 回复:

  卷烟生产中的卷烟机组主要包括两大部分,上位机MLP,用于为控制系统和检测系统提供操作和显示的装置,它包括一个工业PC和一个监视器。以及下位机SRP,包括,调节装置或者检测装置。SRP主要包括四种结点1)SPS,2)HIP,3)CIS,4)SRM。上位机和下位机各结点之间的通信是频繁的,数据对象众多,数据种类也繁多,包括参数上传,下传,指令,域数据等等,所以在这之中,难免会因为操作人员操作失误或者控制器本身的原因导致错误,但错误发生的时候需要尽快的分析,发现错误,解决错误。因此我们需要建立一个可靠的错误判断机制。本文所讨论的BUS实时正是应这种需求而产生的。工作人员根据实时所捕获的并且友好显示的线路上的适时数据便可分析出是哪一方出了问题,出了什么类型的问题。这对安全生产,准确控制起了举足轻重的作用。

  在实时的实现中,我们选择采用了周立功公司的PCI-9810非智能CAN接口卡作为硬件接口用于接收捕获CAN总线上的传输数据。如下图

  PCI-9810非智能CAN接口卡是具有高性能价格比的CAN-bus总线通讯适配卡,它使PC机方便的连接到CAN总线B协议的连接通讯。它是一款采用专用PCI接口转换芯片设计的非智能型CAN接口卡,即插即用,符合PCI2.1规范。它采用中断接收方式,可最大限度减轻占用PC的负荷;具有最多8帧的数据缓冲区。另外我们采用了周立功公司提供的Windows驱动程序升级版PCI-9810BWDM驱动文件将其驱动。

  界面软件实现主要包括四大方面,1)软件平台的选择,2)对硬件接口CAN卡的使用,3)利用接口接收CANBUS线)所接收数据的处理(主要是判断和显示)的实现。

  系统的开发可利用多种程序设计语言,如DELPHI,VB,VC,PB等语言都是面向对象的程序设计语言,但把几者相比较,DELPHI是唯一一套能够同时适用于开发数据库应用、网络及WEB 应用等所有软件的高效率开发环境,且第三方控件多,开发比较快,且设计界面比VB,VC,PB 灵活。基于以上因素,考虑到所要监听CANBUS线路的传输数据信息量大、种类多,以及信息之间相对独立,又有关系且必须备有优良的图形显示等特点,我们选择DELPHI作为软件开发平台。

  在DELPHI程序中,我们是通过调用周立功提供的通用VCI动态链接库来实现对硬件接口PCI-9810的操作的,该动态链接库提供了界面软件能在windows下运行必需的代码和其他资源,其中主要包括十个接口函数如设备相关函数和CAN通讯相关函数以及相关的数据结构的定义。把动态链接库文件夹添加到项目文件夹,然后把库源文件添加到程序代码的应用文件单元即可实现对动态链接库的调用,也就实现了对PCI-9810卡的打开,关闭,启动,复位,收发数据等操作。

  CANBUS线路上的数据对CAN卡来说有着不期性,所以要能对数据实时,准确的接收,必须要通过程序实现一种功能即线路上一旦有数据,就能捕获。对于此,我们采用的方式是利用多线程。即在程序中专门开辟一个线程用于对线路的监听,接收。

  关于多线位的windows系统中,系统可以同时运行多个进程,一个调入内存并准备执行的应用程序称为一个进程,它由装入内存的程序代码和操作系统及由此创建的应用程序执行环境组成,进程就是应用程序的运行实例。每个进程都有自己私有的虚拟地址空间和动态分配的内存,以及文件,线程和其它模块。每个进程都有一个主线程,但可以建立另外的线程。进程中的线程是并行执行的,每个线程占用

  的时间由系统来划分,可以把线程看成是操作系统分配CPU时间的基本实体。每个进程也可以同时执行多个线程并由系统不停地在各个线程之间切换。多线程的DELPHI实现

  函数,但是直接使用API 函数一方面极其不方便,而且使用不当还容易出错。为避免这个问题,我们采用了DEPHI所提供的方法即继承TThread类产生线程对象。TThread由DELPHI的VCL类库提供用于线程编程。在Tthread类中封装了windows中关于线程机制的API函数,继承TThread类产生的线程对象就代表了实际程序中的一个线程。线程对象通过封装使用线程所需的内容大大简化了多线程问题的处理。另外,在DELPHI中,Tthread在Classes单元中声明,直接从Tobject继承下来的,因此,它不是组件。Tthread是个抽象类,所以不能创建Tthread的实例,而只能创建其派生类的实例。在本程序中利用Ttread类来编写多线)从Tthread类派生出一个新的线程类。即建立的TreceiveThread。(2)创建线程对象。即在Types里面定义thread1:TreceiveThread。

  (3)在DELPHI自动生成的用于保存派生类代码的新的单独的文件中重载Execu

  过程,在该过程中将对CAN线路上的数据实时接收并调用对接收到的数据进行处理的基本显示和分类显示函数。在Execute过程中使用了repeat…。.un

  l语句来判断过程是否结束。(4)如果Execute过程执行完毕,则该线程就结束了,并释放线程占用的栈空间。〈4〉对所接收的数据进行处理

  对数据的实时处理包括两方面:1)将接收到的数据桢按照接收数据的数据结构完全显示,这包括桢类型,桢格式,桢ID,桢数据等等。2)将数据进行更深一层的分析判断出数据的真实含义,并将其填入对应的文本框或者画出对应的状态图等等。

  (1)对于第一种基本显示,我们采用的是用DELPHI提供的listbox控件进行

  滚动显示,listbox的容量足够本显示的需要,另外,我们还添加了一个按钮控件用于按照操作人员的需要随时清除listbox里面的内容。

  (2)对于第二种分类显示。对于不同的数据,我们将用不同的分析处理方法进行显示。根据数据的现实含义,主要分为1)上,下传参数。2)域请求和域数据,3)下传指令和上传消息。下面将分别介绍处理方法:

  在CAN线路上传输的参数不仅多达近200种,而且有上传和下传之分,可见所要显示的量之大,加上上下传的参数有着相同的数据结构,所以我们采用查询预先建立好的数据库的方法来进行显示。

  关于数据库系统 数据库系统为我们提供了一种把与我们的工作和生活紧密相关的信息集合在一起的方法。它还提供了在某个集中的地方存储和维护这些信息的方法。数据库系统主要由三大部分组成:数据库管理系统,数据库应用程序,数据库。

  crosoft Access 建立了一个关系数据库(由若干表组成的数据库)。其中包含了一张表,该表的字段分为id表示用以判断的

  串,以及locaTIon表示参数值应填的文本框代号。(2)在应用程序中要实现对所建立的数据库的访问需要用到数据库引擎和数据库访问组件以及数据库控制组件,DELPHI7中提供了BDE,ADO数据引擎,考虑到项目中的数据库应用相对简单,我们选择了常用的BDE(Borland Database Engine)控制读取所建立的数据库,具体操作为1)利用DEPHI7文件夹中的BDE Administer为所建立的数据库创建别名。2)在窗体中添加数据库访问组件和数据库控制组件(包括Data Access页和BDE页中的组件)来实现应用程序与数据库之间的联系。项目中,我们用Table组件来封装数据表,通过BDE数据引擎从数据库表格中取得数据(参数值应填的文本框代号)并通过DataSource组件将数据传递给数据控制组件TDBEdit,3)在程序中,我们通过TTable提供的Gotokey的方法实现对数据库的查找,以及通过对TDBEdit中的数据的使用。实现了将不同参数值填到其唯一对应的文本框中。2 域请求和域数据的处理因为域数据的多类,多变性,以及不确定性,我们不能用处理参数一样的数据库或者其他统一处理的方法,所以在程序中我们使用的是用多层复合选择语句进行判断然后根据不同的域数据做出不同的处理,域数据是根据标识符上传的,只有数据没有别的判断信息,对域数据的判断决定于域请求的数据内容,因此在程序中首先判断桢是否为域请求,如果是,则将桢数据赋值对应的变量,这些变量保存的便是域数据的判断信息,而如果根据标识符判断出为域数据,则根据变量保存的信息进行对应的处理。

  在域数据的处理中,很多情况是要绘出曲线。对此,我们选择了DELPHI的Tchart控件。利用其Series属性里面的Fast-line,将收到的数据正确的绘成曲线 指令和消息的处理

  指令和消息的处理类似于域数据的处理,也是采用多层复合选择语句进行判断,然后做出相应的处理,在此,相应的处理即将指令,消息的相关信息填入文本框。

  本文作者的创新点:结合实际情况的具体需要,合理的选用了Delphi作为软件开发平台,在实时性方面,我们选择了Delphi自身提供的线程类,而不是按照常规选择windows提供的API函数,从而使程序的设计变的简洁,另外在数据的处理方面,我们不仅采用了通常的数据库方法,而且还根据实际需要采用了其他简易可行的方法。很好地完成了需求。

  ,本项目所设计的实时在实用性,实时性,准确性,以及友好性上都是很不错的。

  信息 UAA2016采用零电压技术驱动三端双向可控硅开关,可实现电阻负载的无RFI功率调节。直接在交流电源线上运行,其主要应用是对电加热系统(如面板加热器或电熨斗)的精确调节。内置数字锯齿波形允许在+/- 1°C频段内进行比例温度调节围绕设定点。为节省能源,可编程降温功能,为确保安全,传感器故障保护可在传感器连接断开时禁止输出脉冲。预设温度(即除霜)也是可能的。在需要高滞后的应用中,其值可在设定点附近调节至5°C。所有这些功能都以非常低的外部元件数量实现。 三端双向可控硅开关零电压开关,最高2.0 kW(MAC212A8) 直接交流线°C频段内的比例调节 可编程温度降低 预设温度(即除霜) 传感器故障保护 可调节滞后 低外部组件计数 电路图、引脚图和封装图...

  信息描述 UC1825A-DIE PWM 控制器是标准 UC1825 系列的改良版本。 已经对几个电路块进行了性能提升。 误差放大器增益带宽为12MHz,而输入偏移电压为 2mV。 电流限制阀值经验证为耐受的 5%。 为实现精准死区时间控制,振荡器放电电流额定值为 10mA。 频率精度被提升至 6%。 典型值为 100μA 的启动电源电流非常适合于脱机应用。 在不对启动电流技术规格产生影响的情况下,重新设计了输出驱动器,以便在 UVLO 期间主动灌电流。 此外,每个输出在转换期间能够输出 2A 的峰值电流。特性 抗辐射:30kRad (Si) 电离总剂量效应 (TID)抗辐射性是基于初始器件鉴定剂量率等于每秒 10mrad 时的典型值。 提供辐射批次验收测试 - 详细信息请联系厂家。与电压模式或电流模式控制方法兼容 在开关频率下实际运行 至输出的 50ns 传播延迟 高电流双推拉式输出修整的振荡器放电电流 低 100μA 启动电流 逐周期电流限制比较器 具有全周期重启动功能的锁存过流比较器...

  信息描述 UC1825-DIE PWM 控制器件针对高频开关模式电源应用进行了优化。 对在大大增加误差放大器的带宽和转换率的同时,大大减小通过比较器和逻辑电路的传播延迟给与了特别关注。 这个控制器设计用于电流模式或电压模式系统,此系统具有输出电压前馈功能。保护电路包括一个阀值电压为 1V 的电流限制比较器、一个 TTL 兼容关断端口和一个软启动引脚,此引脚可对折为一个最大占空比钳位。 此逻辑被完全锁存以提供无抖动运行,并且抑制了输出上的多脉冲。 一个具有 800mV 滞后的欠压闭锁部分可确保低启动电流。 欠压闭锁期间,输出为高阻抗。这个器件特有推挽式输出,此输出被设计用来拉、灌来自电容负载(诸如一个功率金属氧化物半导体场效应晶体管 (MOSFET) 的栅极)的高峰值电流。 接通状态被设计为高电平。特性 抗辐射:30kRad (Si) 电离总剂量效应 (TID)抗辐射性是基于初始器件鉴定剂量率等于每秒 10mrad 时的典型值。 提供辐射批次验收测试 - 详细信息请联系厂家。与电压或电流模式拓扑结构兼容 实际运行开关频率 到输出的 50ns 传播延迟 高电流双推挽式输出 宽带宽误差放大器 支持双脉冲抑制的全锁存逻辑 逐脉冲电流限制 软启动/最大占空比...

  信息描述 TPS65983 是一款独立式 USB Type-C 和 USB 供电 (PD) 控制器,可在 USB Type-C 连接器中提供电缆插入状态和方向检测。在电缆检测过程中,TPS65983 会在 CC 线上使用 USB PD 协议进行相应传输。当完成电缆检测和 USB PD 协商之后,TPS65983 会使能相应的电源路径并配置内部和外部(可选)多路复用器的交替模式设置。CC 引脚上的混合信号前端可为 Type-C 电源提供默认值 (500mA)、1.5A 或 3A 三种电流、检测电缆插入事件、确定 USB Type-C 电缆方向以及遵循指定的双相标记编码 (BMC) 和物理层 (PHY) 协议自主协商 USB PD 合约。端口电源开关在 5V 电压下可为传统 USB 电源和 Type-C USB 电源提供高达 3A 的下行电流。当 USB PD 电源用作供电器件(主机)、受电器件(设备)或供电-受电器件时,附加的双向开关路径可在最高 20V 的电压下为其提供高达 3A 的电流。此外,TPS65983 也可用作上行数据端口 (UFP)、下行数据端口 (DFP) 或者双角色数据端口。端口数据多路复用器可实现端口与顶部或底部 D+/D– 信号对之间的 USB 2.0 HS 数据传输,并且具有一个 USB 2.0 低...

  信息描述 TPS40007-DIE 是一款用于低压、非隔离式同步降压稳压器的控制器。 这个控制器驱动一个用于主降压开关的 N 通道 MOSFET,和一个用于同步整流器开关的 N 通道 MOSFET,从而实现极高效率的功率转换。 此外,此器件使用 TI 已获专利的 Predictive Gate Drive(可预期栅极驱动)技术控制从主开关关闭到整流器打开,以及从整流器关闭到主开关打开的延迟,用这个方法来最大限度地减少同步整流器内二极管损耗(包括传导和恢复时的损耗)。 这些损耗的减少量是很可观的,并且增加了效率。 对于一个指定的转换器功率水平,可使用较小的 FET,或者可减少散热片的数量,甚至无需散热。可使用一个连接到器件上的单个电阻器来调节电流限制阀值。 TPS40007-DIE 控制器执行一个闭环软启动功能。特性 低输出电压Predictive Gate Drive 用于实现更高效率的 N 通道金属氧化物半导体场效应晶体管 (MOSFET) 外部可调软启动和过流限制 频率电压模式控制 具有 VOUT 预偏置的源出/灌入电压 热关断 内部引导加载二极管应用范围网络设备 电信设备 基站 服务器 数字信号处理器 (DSP) 电源 电源模块...

  信息描述TPS2477x 是一款针对 2.5V 至 18V 系统的高性能模拟热插拔控制器。 TPS2477x 精确且具有高度可编程保护设置,对设计故障隔离要求较高的高功率、高可用性系统很有帮助。 该控制器还具有可编程电流限制、快速关断和故障定时器功能,可在热短路等故障期间保护负载和电源。 可调整快速关断阈值和响应时间,以确保快速响应实际故障,同时避免误跳变。 该器件具有可编程的安全工作区域 (SOA) 保护和浪涌定时器,可在所有条件下对金属氧化物半导体场效应晶体管 (MOSFET) 加以保护。 TPS2477x 将电源正常状态标志置为有效后,会在过流事件期间作为断路器工作并运行故障定时器,但不会限制电流。 当故障定时器到期后,控制器会关断。 该控制器具有两个独立定时器(浪涌/故障),用户可根据系统需求定制保护功能。 最后,TPS2477x 非常灵活,可帮助热插拔设计满足 240VA 要求,本数据表中给出了一个设计示例。特性 2.5V 至 18V 总线V 绝对最大值)可编程保护设置: 电流限制:10mV 时为 ±5% 快速跳变:20mV 时为 ±10% 可编程场效应管 (FET) 安全运行区域 (SOA) 保护 可编程快速跳变的响应时间双定时器(浪涌/故障)模拟电流监...

  信息描述TPS2474x 是一款针对 2.5V 至 18V 系统的集成 ORing 和 热插拔控制器。 该控制器精确且具有可编程保护设置,对设计故障隔离要求较高的高功率、高可用性系统很有帮助。 该控制器还具有可编程电流限制、快速关断和故障定时器功能,可在热短路等故障期间保护负载和电源。 可调整快速关断阈值和响应时间,以确保快速响应实际故障,同时避免误跳变。 该器件具有可编程的 SOA(安全工作区域)保护和浪涌定时器,可在所有工作条件下对金属氧化物半导体场效应晶体管 (MOSFET) 加以保护。 TPS2474x 将电源正常状态标志置为有效后,会在过流事件期间运行故障定时器,但不会限制电流。 当故障定时器到期后,控制器会关断。 该控制器具有两个独立定时器(浪涌/故障),用户可根据系统需求定制保护功能。 用户可利用 TPS2474x 的 ORing 功能来编程反向电压阈值和响应时间,以简化冗余电源系统的设计。特性 2.5V 至 18V 总线V 绝对最大值)可编程保护设置: 电流限制:10mV 时为 ±5% 快速跳变:20mV 时为 ±10% 反向电压:–1mV 时为 ±1mV快速跳变和反向电压可编程响应时间 可编程场效应管 (FET) 安全运行区域 (SOA) 保护双定时...

  信息 TPS2398和TPS2399集成电路是热插拔电源管理器,针对标称-48 V系统进行了优化。它们采用了改进的断路器响应,可以提供快速的短路保护,同时仍然可以使插件承受突然切换到更高电压电源时可能产生的大瞬态。它们的设计电源电压范围高达-80 V,额定可承受-100 V的尖峰电压。结合外部N沟道FET和检测电阻,它们可用于实现插入卡的实时插入和动力系统中的模块。这两款器件均提供负载电流压摆率和峰值幅度限制,可通过检测电阻值和单个外部电容轻松编程。它们还提供单线故障报告,故障卡的电气隔离以及防止误跳过流跳闸的保护。 TPS2398响应电流故障而锁定,而TPS2399在发生故障时定期重试负载。 宽输入电源:-36 V至-80 V 瞬态额定值至-100 V 改善瞬态响应 可用输入(EN) 可编程电流限制 可编程电流摆率 故障计时器以消除滋扰行程 漏极开路电源良好输出(/ PG)...

  信息描述本示例中使用的 DelfinoTMS320F2837xD 是一款功能强大的 32 位浮点微控制器单元 (MCU),针对高级闭环控制 应用 而设计,例如工业驱动器和伺服电机控制、太阳能逆变器和转换器、数字电源、电力输送以及电力线通信。数字电源和工业驱动器的完整开发包作为 powerSUITE 和 DesignDRIVE 方案的一部分提供。而 Delfino 产品系列并不是 TMS320C2000产品组合的新成员,F2837xD 支持新型双核 C28x 架构,显著提升了系统性能;同时集成有模拟和控制外设,允许设计人员整合控制架构,消除了在高端系统中使用多处理器的需求。双实时控制子系统基于 TI 的 32 位 C28x 浮点 CPU,每个内核中可提供 200MHz 的信号处理性能。C28x CPU 的性能通过新型 TMU 加速器和 VCU 加速器得到了进一步提升,TMU 加速器可快速执行包含变换和转矩环路计算中常见的三角运算的算法;VCU 加速器可缩短编码应用中常见的复杂数学运算的 时间。F2837xD 微控制器系列 采用 两个 CLA 实时控制协处理器。CLA 是一款独立的 32 位浮点处理器,运行速度与主 CPU 相同。该 CLA 会对外设触发器作出响应,并与主 C28x CPU 同时执行代码。...

  信息描述 bq500511 是一款无线电源发送器控制器。在与 bq50002 模拟前端器件搭配使用时,该器件集成了创建符合 Qi 标准或 5V 专用发送器所需的全部功能。 bq500511 和 bq50002 共同构成一款紧凑型无线充电器解决方案。 bq500511 对周围环境执行 ping 操作来寻找需要供电的接收器器件,之后会与 Rx 器件安全接合、接收充电器件传输的通信数据包以及根据 WPC v1.2 规范管理功率传输。bq500511 特有的 Dynamic Power Limiting™ (DPL) 功能可最大限度地提升无线电源控制应用的灵活性。 对于功率受限的输入电源,DPL 对其可用功率进行无缝优化来改善用户体验。通过持续监测已建立电源传输的效率,该系统支持外来物体检测 (FOD),以防因在无线电源传输场中错误放置金属物体而产生功率损耗。 如果在电源传输过程中出现任何异常情况,bq500511 将对其进行处理并提供指示输出。 综合状态和故障监视特性可实现一款经 Qi 认证的低成本且稳健耐用的无线电源系统设计方案。bq500511 采用 6mm x 6mm 耐热增强型 40 引脚超薄四方扁平无引线 (VQFN) 封装。特性 符合无线 规范的数字控制器 专为与 bq50002 模拟前端搭配使用而设计 适用于无线充电...

  信息 TCC-303是一款三输出高压数模转换控制IC,专门用于控制和偏置安森美半导体的无源可调谐集成电路(PTIC)。这些PTIC控制器适用于移动电话和专用RF调谐应用。安森美半导体在移动电话中的可调谐电路的实施可以显着改善天线辐射性能。 PTIC控制器通过1 V至24 V的偏置电压进行控制.TCC-303高压PTIC控制器具有专为满足这一需求而设计,提供三个独立的高压输出,可并行控制多达三个不同的可调谐PTIC。该设备通过MIPI RFFE数字接口完全控制。 控制安森美半导体的PTIC可调谐电容器 符合蜂窝和其他无线 V可编程DAC输出的V集成升压转换器 低功耗 MIPI RFFE接口(1.8 V) 可用于WLCSP(RDL球阵列) 符合MIPI 26 MHz回读 电路图、引脚图和封装图...

  信息 TCC-226是一款六输出高压数模转换控制IC,专门用于控制和偏置安森美半导体的PassiveTunable集成电路(PTIC)。 这些PTIC控制器适用于移动电话和专用RF调谐应用。安森美半导体在移动电话中可调谐电路的实现可以显着改善天线辐射性能。 PTIC控制器通过1 V至24 V的偏置电压进行控制.TCC-226高压PTIC控制器专为满足这一需求而设计,提供六个独立的高压输出,可控制多达六个不同的可调PTIC平行。该器件通过多协议数字接口完全控制。 控制安森美半导体的PTIC可调谐电容器 构成完整RF调谐解决方案的一部分 符合时序要求蜂窝和其他无线个可编程DAC输出(高达24 V)的集成升压转换器 低功耗 SPI的自动检测( 30位或32位)或MIPI RFFE接口(1.8 V) WLCSP(RDL球阵列)提供 符合MIPI 26 MHz回读 足迹与TCC-303兼容 电路图、引脚图和封装图...

  信息 TCC-206是一款六输出高压数模转换控制IC,专门用于控制和偏置安森美半导体的无源可调谐集成电路(PTIC)。电容电路旨在用于移动电话和专用RF调谐应用。在移动电话中实现安森美半导体可调谐电路可以显着改善辐射天线性能。可调谐电容器通过2 V至24 V的偏置电压进行控制.TCC-206高压PTIC控制IC专门针对旨在满足这一需求,提供六个独立的高压输出,可并行控制多达六个不同的可调谐PTIC。该设备通过多协议数字接口完全控制。 控制ON半导体PTIC可调谐电容器 符合蜂窝和其他无线系统要求的时间要求 具有六个可编程输出(高达24 V)的集成升压转换器 低功耗 SPI(30或32位)或1.8 V MIPI RFFE接口的自动检测 适用于WLCSP封装(RDL球阵列) 符合MIPI 26 MHz回读 电路图、引脚图和封装图...

  信息 TCC-103是一款三输出高压数模转换控制IC,专门用于控制和偏置安森美半导体的无源可调谐集成电路(PTIC)。这些可调电容电路旨在用于移动电话和专用RF调谐应用。安森美半导体在移动电话中实现可调谐电路可以显着改善天线辐射性能。可调谐电容器通过2 V至20 V的偏置电压进行控制.TCC-103高压PTIC控制IC专门设计用于满足这一需求,提供三个独立的高压输出,可并行控制多达三个不同的可调谐PTIC。该器件通过多协议数字接口完全控制。 控制ON半导体PTIC可调谐电容器和RF调谐器 符合蜂窝和其他无线系统的时序要求 具有三个可编程输出(高达24 V)的集成升压转换器 低功耗 SPI(30或32位)或MIPI RFFE的自动检测接口(1.2 V或1.8 V) 可用于WLCSP(球形和外围阵列)以及独立或模块集成...

  信息 TCC-202是一款双输出高压数模转换控制IC,专门用于控制和偏置安森美半导体的无源可调谐集成电路(PTIC)。这些可调电容电路旨在用于移动电话和专用RF调谐应用。在移动电话中实现安森美半导体可调谐电路可以显着改善天线辐射性能。可调谐电容器通过2 V至24 V的偏置电压进行控制.TCC-202高压PTIC控制IC专门针对旨在满足这一需求,提供两个独立的高压输出,可并行控制多达两个不同的可调谐PTIC。该设备通过符合MIPI标准的接口完全控制。 控制ON Semiconductor PTIC可调谐电容 符合蜂窝和其他无线系统要求的时间要求 具有两个可编程DAC输出(高达24V)的集成升压转换器 低功耗 采用WLCSP封装(RDL球阵列) MIPI-RFFE接口 符合MIPI 26 MHz回读 电路图、引脚图和封装图...

本文链接:http://megsmind.net/dizhizongxian/289.html
随机为您推荐歌词

联系我们 | 关于我们 | 网友投稿 | 版权声明 | 广告服务 | 站点统计 | 网站地图

版权声明:本站资源均来自互联网,如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

Copyright @ 2012-2013 织梦猫 版权所有  Powered by Dedecms 5.7
渝ICP备10013703号  

回顶部